Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We review two magnetic tunnel junction (MTJ) approaches for compact, low-power, CMOS-integrated true random number generation (TRNG). The first employs passive-read, easy-plane superparamagnetic MTJs (sMTJs) that generate thermal-fluctuation-driven bitstreams at 0.5–1 Gb s−1per device. The second uses MTJs with magnetically stable free layers, operated with stochastic write pulses to achieve switching probabilities of about 0.5 (i.e. write error rates of ), achieving Gb s−1per device; we refer to these as stochastic-write MTJs (SW-MTJs). Randomness from both approaches has been validated using the NIST SP 800-22r1a test suites. sMTJ approach uses a read-only cell with low power and can be compatible with most advanced CMOS nodes, while SW-MTJs leverage standard CMOS MTJ process flows, enabling co-integration with embedded spin-transfer torque magnetic random access memory. Both approaches can achieve deep sub-0.01 µm2MTJ footprints and offer orders-of-magnitude better energy efficiency than CPU/GPU-based generators, enabling placement near logic for high-throughput random bitstreams for probabilistic computing, statistical modeling, and cryptography. In terms of performance, sMTJs generally suit applications requiring very high data-rate random bits near logic processors, such as probabilistic computing or large-scale statistical modeling. Whereas SW-MTJs are attractive option for edge-oriented microcontrollers, providing entropy sources for computing or cryptographic enhancement. We highlight the strengths, limitations, and integration challenges of each approach, emphasizing the need to reduce device-to-device variability in sMTJs—particularly by mitigating magnetostriction-induced in-plane anisotropy—and to improve temporal stability in SW-MTJs for robust, large-scale deployment.more » « lessFree, publicly-accessible full text available December 24, 2026
-
Free, publicly-accessible full text available August 1, 2026
-
Nanoscale magnetic tunnel junction (MTJ) devices can efficiently convert thermal energy in the environment into random bitstreams for computational modeling and cryptography. We recently showed that perpendicular MTJs actuated by nanosecond pulses can generate true random numbers at high data rates. Here, we explore the dependence of probability bias—the deviations from equal probability (50/50) 0/1 bit outcomes—of such devices on temperature, pulse amplitude, and duration. Our experimental results and device model demonstrate that operation with nanosecond pulses in the ballistic limit minimizes variation of probability bias with temperature to be far lower than that of devices operated with longer-duration pulses. Furthermore, operation in the short-pulse limit reduces the bias variation with pulse amplitude while rendering the device more sensitive to pulse duration. These results are significant for designing true random number generator MTJ circuits and establishing operating conditions.more » « less
-
Abstract Ultra-thin films of low damping ferromagnetic insulators with perpendicular magnetic anisotropy have been identified as critical to advancing spin-based electronics by significantly reducing the threshold for current-induced magnetization switching while enabling new types of hybrid structures or devices. Here, we have developed a new class of ultra-thin spinel structure Li0.5Al1.0Fe1.5O4(LAFO) films on MgGa2O4(MGO) substrates with: 1) perpendicular magnetic anisotropy; 2) low magnetic damping and 3) the absence of degraded or magnetic dead layers. These films have been integrated with epitaxial Pt spin source layers to demonstrate record low magnetization switching currents and high spin-orbit torque efficiencies. These LAFO films on MGO thus combine all of the desirable properties of ferromagnetic insulators with perpendicular magnetic anisotropy, opening new possibilities for spin based electronics.more » « less
-
Switching of perpendicular magnetization via spin–orbit torque (SOT) is of particular interest in the development of non-volatile magnetic random access memory (MRAM) devices. We studied current-induced magnetization switching of Ir/GdFeCo/Cu/Pt heterostructures in a Hall cross geometry as a function of the in-plane applied magnetic field. Remarkably, magnetization switching is observed at zero applied field. This is shown to result from the competition between SOT, the Oersted field generated by the charge current, and the material's coercivity. Our results show a means of achieving zero-field switching that can impact the design of future spintronics devices, such as SOT-MRAM.more » « less
An official website of the United States government

Full Text Available